68 research outputs found

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    Distributed network and service architecture for future digital healthcare

    Get PDF
    According to World Health Organization (WHO), the worldwide prevalence of chronic diseases increases fast and new threats, such as Covid-19 pandemic, continue to emerge, while the aging population continues decaying the dependency ratio. These challenges will cause a huge pressure on the efficacy and cost-efficiency of healthcare systems worldwide. Thanks to the emerging technologies, such as novel medical imaging and monitoring instrumentation, and Internet of Medical Things (IoMT), more accurate and versatile patient data than ever is available for medical use. To transform the technology advancements into better outcome and improved efficiency of healthcare, seamless interoperation of the underlying key technologies needs to be ensured. Novel IoT and communication technologies, edge computing and virtualization have a major role in this transformation. In this article, we explore the combined use of these technologies for managing complex tasks of connecting patients, personnel, hospital systems, electronic health records and medical instrumentation. We summarize our joint effort of four recent scientific articles that together demonstrate the potential of the edge-cloud continuum as the base approach for providing efficient and secure distributed e-health and e-welfare services. Finally, we provide an outlook for future research needs

    P2P Group Management Systems: A Conceptual Analysis

    Get PDF
    Peer-to-Peer (P2P) networks are becoming eminent platforms for both distributed computing and interpersonal communication. Their role in contemporary multimedia content delivery and communication systems is strong, as witnessed by many popular applications and services. Groups in P2P systems can originate from the relations between humans, or they can be defined with purely technical criteria such as proximity. In this article, we present a conceptual analysis of P2P group management systems. We illustrate how groups are formed using different P2P system architectures, and analyze the advantages and disadvantages of using each P2P system architecture for implementing P2P group management. The evaluation criteria in the analysis are performance, robustness, fairness, suitability for battery-powered devices, scalability, and security. The outcome of the analysis facilitates the selection of an appropriate P2P system architecture for implementing P2P group management in both further research and prototype development

    Local edge computing for radiological image reconstruction and computer-assisted detection: A feasibility study

    Get PDF
    Computational requirements for data processing at different stages of the radiology value chain are increasing. Cone beam computed tomography (CBCT) is a diagnostic imaging technique used in dental and extremity imaging, involving a highly demanding image reconstruction task. In turn, artificial intelligence (AI) assisted diagnostics are becoming increasingly popular, thus increasing the use of computation resources. Furthermore, the need for fully independent imaging units outside radiology departments and with remotely performed diagnostics emphasize the need for wireless connectivity between the imaging unit and hospital infrastructure. In this feasibility study, we propose an approach based on a distributed edge-cloud computing platform, consisting of small-scale local edge nodes, edge servers with traditional cloud resources to perform data processing tasks in radiology. We are interested in the use of local computing resources with Graphics Processing Units (GPUs), in our case Jetson Xavier NX, for hosting the algorithms for two use-cases, namely image reconstruction in cone beam computed tomography and AI-assisted cancer detection from mammographic images. Particularly, we wanted to determine the technical requirements for local edge computing platform for these two tasks and whether CBCT image reconstruction and breast cancer detection tasks are possible in a diagnostically acceptable time frame. We validated the use-cases and the proposed edge computing platform in two stages. First, the algorithms were validated use-case-wise by comparing the computing performance of the edge nodes against a reference setup (regular workstation). Second, we performed qualitative evaluation on the edge computing platform by running the algorithms as nanoservices. Our results, obtained through real-life prototyping, indicate that it is possible and technically feasible to run both reconstruction and AI-assisted image analysis functions in a diagnostically acceptable computing time. Furthermore, based on the qualitative evaluation, we confirmed that the local edge computing capacity can be scaled up and down during runtime by adding or removing edge devices without the need for manual reconfigurations. We also found all previously implemented software components to be transferable as such. Overall, the results are promising and help in developing future applications, e.g., in mobile imaging scenarios, where such a platform is beneficial

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction

    The Many Faces of Edge Intelligence

    Get PDF
    Edge Intelligence (EI) is an emerging computing and communication paradigm that enables Artificial Intelligence (AI) functionality at the network edge. In this article, we highlight EI as an emerging and important field of research, discuss the state of research, analyze research gaps and highlight important research challenges with the objective of serving as a catalyst for research and innovation in this emerging area. We take a multidisciplinary view to reflect on the current research in AI, edge computing, and communication technologies, and we analyze how EI reflects on existing research in these fields. We also introduce representative examples of application areas that benefit from, or even demand the use of EI.Peer reviewe
    • …
    corecore